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Abstract

A high order theory is presented to examine the electromechanical behavior of piezoelectric generic shells with

graded material properties in the thickness direction. Different types of charge equations, depending upon whether the

driving signal of piezoelectrics is free charge or electric voltage, have been derived. The obtained equations can be

readily reduced to typical structures, such as beams, plates and circular cylindrical shells. The high order theory has

been used to study the sensing and actuating behavior of a simply supported inhomogeneous piezoelectric circular

cylindrical shell and, for comparison and validation purposes, a homogeneous shell. Comparison between the obtained

numerical results to those available exact solutions for homogeneous shell shows that the developed theory is accurate.

The effects of graded material properties on the piezoelectrically induced displacements, stresses, electric potential and

electric displacements distributions are also quantified, clearly showing the advantage of functionally graded piezo-

electrics over homogeneous ones in terms of the usages as sensors and actuators.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, the use of functionally graded materials (FGMs) has gained intensive attention especially
in extreme high temperature environment, as reflected in numerous papers on this subject (e.g., Niino, 1990;
Koizumi, 1993; Reddy and Chin, 1998). FGMs are inhomogeneous materials of which the material
properties vary continuously in one (or more) direction(s). This is achieved by gradually changing the
composition of the constituent materials along one direction, usually the thickness direction from one
surface to another, to obtain smooth variation of material properties and optimum response to externally
applied thermo-mechanical loading. FGMs are developed now for the general use as structural components
in high temperature environments and being strongly considered as a potential structural material candi-
date for future high-speed spacecraft. Typical FGMs are made from a mixture of ceramic and metal, or a
combination of different metals or different ceramics that are appropriate to achieve the desired objective.
The concept of FGMs has been applied to electronics, optics, chemistry, biomedical and many other

fields. For intance, FGMs with a gradient of piezoelectric properties can be used for ultrasonic transducers
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or, as a natural application, for bending actuators (Zhu and Meng, 1996). Typical piezoelectric ceramic
actuators include unimorph benders, bimorph benders and flextensional composite structures. However,
those actuators usually have a non-uniform distribution of stresses or stressed metal to ceramic bonds, or
both; the bonding agent may crack or peel off at low temperature and may creep at high temperature, which
could lead to reliability and lifetime limitations. A better way to solve the above problems is using FGM
actuators which are monolithic type piezoelectric devices without a bonding agent. The failures originated
from internal debonding or from stress concentration developed in conventional bimorphs are avoided.
Significantly increased durability and reliability can thus be achieved. The depth dependence of (func-
tionally graded) piezoelectric property in PVDF films was obtained for a variety of poling conditions and
field-reversal poling can be used to increase gradient activity (Marcus, 1981). A number of preparation
routes have been developed in order to produce piezoelectric ceramics with a one-dimensional gradient of
the chemical composition. The subsequent poling process transforms the gradient of the chemical com-
position into a gradient of the piezoelectric coefficients by different mechanisms. For example, a gradient of
the electrical conductivity is suited, which can be realized by a gradient of dopants or a chemical reduction
of one side of oxide ceramic (Wu et al., 1996).
Following exact study of the responses of piezoelectric structures (limited to simple geometries such as

simply supported plate strips, rectangular plates and circular cylindrical shells) to external loading (see, for
example Bisegna and Maceri, 1996; Chen et al., 1996, 1999), much effort has been devoted to the inves-
tigation of the behavior of laminated piezoelectric plates and shells, in which the material properties are
piecewise constant. Sosa (1992) developed a transfer matrix approach to investigate the electromechanical
coupling characteristics of infinite laminated piezoelectric plates. By extending the work of Pagano (1970)
for pure elastic laminates, Heyliger (1997) presented some exact solutions for laminated piezoelectric plates.
These approaches have been extended widely to the analyses of composite laminated plates and shells for
different materials and loads (Xu et al., 1997; Lee and Jiang, 1996). However, the aforementioned ap-
proaches are not suitable piezoelectric plates and shells with continuously varied material properties. Reddy
and Cheng (2001) obtained an asymptotic solution of a FG structure (a functionally graded plate attached
on its bottom surface by a piezoelectric actuator) by using the transfer matrix formulation in combination
with the asymptotic expansion. Shell structures are more complex compared to plates. So far, to the au-
thors� knowledge, minimal or no work has been presented in the literatures for functionally graded pi-
ezoelectric shells.
For piezoelectric structures with more complex geometry, approximate while powerful analytical models

of beam, plate and shell type structures are preferred in order to facilitate the engineering design. Significant
progress in this direction has been achieved for the past decade. Kim and Jones (1991) and Rivory et al.
(1994) independently improved the Crawley and de Luis models (1987) for piezoelectric beams. The im-
proved models were based upon either the Bernouli–Euler beam theory or the Timoshenko beam theory
and were shown in better agreement with experimental results. Tzou and his co-workers (e.g., Tzou and
Gadre, 1989; Tzou and Howard, 1994) conducted a series studies on piezoelectric and thermopiezoelectric
shells. Most of their studies were based on the classic shell theory. Analogous to the Mindlin plate theory,
Miller and Abramovich (1995) introduced a model to accommodate the transverse shear deformation of
self-sensing piezoelectric shells. Recent studies on this aspect include those by Yang (1999), Wang and Yang
(2000), Bisegna and Caruso (2001), among others.
In this paper, a high order theory is presented to model the electromechanical behavior of functionally

graded piezoelectric generic shells. The generalized Hamilton�s principle, which incorporates different
electric boundary conditions as well as mechanical boundary conditions, is utilized to obtain the governing
equations of motion. Deduction of the governing equations for piezoelectric beams, plates and circular
cylindrical shells from the high order piezoelectric generic shell theory is briefly discussed. In the light of the
formulae presented herein, a simply supported anisotropic inhomogeneous piezoelectric circular cylindrical
shell and, for comparison and validation purposes, a homogeneous shell is considered in illustrative ex-
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amples. Comparison of the numerical results for the homogeneous shell with those available exact solutions
shows that the derived model is satisfactory. The effects of graded material properties on the piezoelec-
trically induced displacements, stresses, electric potential and electric displacements distributions are also
quantified.

2. The motion and electrostatics equations

Since the governing equations for beam, plate and circular cylindrical shell type structures can be de-
duced directly from those of generic shells, we start the derivation of the equations for piezoelectric generic
shells by introducing the co-ordinated system used in this paper. Fig. 1 shows a geometric definition of the
piezoelectric shell. An orthogonal curvilinear co-ordinate system defined by three unit vectors a1, a2, and a3
is attached to the structure. The thickness of the shell is assumed to be 2h. The Lame parameters and the
radii of curvature related to a1 and a2 are denoted by A1, A2, R1 and R2, respectively, and are independent of
transverse ordinate when the shell is thin, i.e., h � R1 and h � R2. (In the following, z and a3 will be used
simultaneously.)
Linear constitutive equations of functionally graded piezoelectric materials with thickness-graded ma-

terial properties are

rij ¼ Cijklekl � ekijEk

Di ¼ eiklekl þ �ikEk
ð1Þ

The materials property gradient is assumed to be in the thickness direction, i.e.,

Cijkl � CijklðzÞ; ekij � ekijðzÞ; �ik � �ikðzÞ ð2Þ
In the general theory of shell, the strain components and the electric field components in above equations

are related to the displacement components ui (i ¼ 1; 2; 3) and the electric potential u by the following
relations:

e11 ¼
ou1
A1oa1

þ u2
oA1

A1A2oa2
þ u3
R1

; e22 ¼
ou2
A2oa2

þ u1
oA2

A1A2oa1
þ u3
R2

e33 ¼
ou3
oa3

; c23 ¼
ou2
oa3

þ ou3
A2oa2

� u2
R2

c31 ¼
ou1
oa3

þ ou3
A1oa1

� u1
R1

c12 ¼
ou1
A2oa2

þ ou2
A1oa1

� u2
oA2

A1A2oa1
� u1

oA1
A1A2oa2

cij ¼ 2eij; i 6¼ j

ð3Þ

Fig. 1. Configuration of a generic piezoelectric shell.
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E1 ¼ � ou
A1oa1

; E2 ¼ � ou
A2oa2

; E3 ¼ � ou
oa3

ð4Þ

For a piezoelectric shell subject to a prescribed surface traction T i and a surface free charge density w,
the Hamilton�s principle states

d
Z t1

0

dt
Z
V
ðK

�
� HÞdV �

Z
Sr

T idui dS þ
Z
Sw

wd/dS
�

¼ 0 ð5Þ

where

K––kinetic density K ¼ 1
2
q _uui _uui ð6Þ

H––electric enthalpy density H ¼ 1
2
rijeij � 1

2
DiEi ð7Þ

The constitutive equation (1) are related to the electric enthalpy density by

rij ¼
oH
oeij

; Di ¼ � oH
oEi

ð8Þ

Substituting Eqs. (3), (4), (6)–(8) into Eq. (5), producesZ t1

t0

dt
Z
V

rijdeij
��

þ q€uuidui þ DidEi

�
dV �

Z
Sr

T idui dS þ
Z
Sw

wdudS
�

¼ 0 ð9Þ

The equation can be further expressed as two independent equationsZ
V

rkldekl dV ¼ �
Z
V

q€uuidui dV þ
Z
Sr

T idui dS ð10Þ

Z
V
DkdEk dV ¼ �

Z
Sw

wdudS ð11Þ

In the present theory, the displacement and the electric potential fields are assumed to be

u1ða1; a2; a3Þ ¼ uð0Þ1 ða1; a2Þ þ zuð1Þ1 ða1; a2Þ
u2ða1; a2; a3Þ ¼ uð0Þ2 ða1; a2Þ þ zuð1Þ2 ða1; a2Þ
u3ða1; a2; a3Þ ¼ uð0Þ3 ða1; a2Þ þ zuð1Þ3 ða1; a2Þ
uða1; a2; a3Þ ¼ uð0Þða1; a2Þ þ zuð1Þða1; a2Þ þ z2uð2Þða1; a2Þ

ð12Þ

where uð1Þ3 is introduced to account for the transverse normal strain when the piezoelectric structure is used
as actuator, and uð2Þ represents the parabolic variation of the electric potential in the thickness direction.
Since the assumed displacements involve linear terms and the electric potential contains both linear and
quadratic terms, the developed theory is called a high order theory, compared to Mindlin type theories.
Substituting Eq. (12) into Eq. (3), yields the strain and the electric field components as

e11 ¼ eð0Þ11 þ zeð1Þ11 ; e22 ¼ eð0Þ22 þ zeð1Þ22 ; e33 ¼ eð0Þ33

c23 ¼ cð0Þ23 þ zcð1Þ23 ; c31 ¼ cð0Þ31 þ zcð1Þ31 ; c12 ¼ cð0Þ12 þ zcð1Þ12
ð13Þ

E1 ¼ Eð0Þ
1 þ zEð1Þ

1 þ z2Eð2Þ
1 ; E2 ¼ Eð0Þ

2 þ zEð1Þ
2 þ z2Eð2Þ

2 ; E3 ¼ Eð0Þ
3 þ 2zEð1Þ

3 ð14Þ

where detail expressions for eð0Þij , eð1Þij etc. can be obtained easily and are omitted for the sake of brevity.
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Substituting above strain expressions into the left hand side of Eq. (10) produces

Z
V
r11de11 dV ¼

Z
S

2
4�

o A2r
ð0Þ
11

� �
oa1

duð0Þ1 þ rð0Þ
11

oA1
oa2

duð0Þ2 þA1A2
R1

rð0Þ
11 duð0Þ3 �

o A2r
ð1Þ
11

� �
oa1

duð1Þ1 þ rð1Þ
11

oA1
oa2

duð1Þ2

þA1A2
R1

rð1Þ
11 duð1Þ3

�
da1 da2þ

Z
c

rð0Þ
11 n1du

ð0Þ
1

�
þ rð1Þ

11 n1du
ð1Þ
1

�
dc

Z
V
r22de22 dV ¼

Z
S

2
4�

o A1r
ð0Þ
22

� �
oa2

duð0Þ2 þ rð0Þ
22

oA2
oa1

duð0Þ1 þA1A2
R2

rð0Þ
22 duð0Þ3 �

o A1r
ð1Þ
22

� �
oa2

duð1Þ2 þ rð1Þ
22

oA2
oa1

duð1Þ1

þA1A2
R2

rð1Þ
22 duð1Þ3

�
da1 da2þ

Z
c

rð0Þ
22 n2du

ð0Þ
2

�
þ rð1Þ

22 n2du
ð1Þ
2

�
dcZ

V
r33de33 dV ¼

Z
S
rð0Þ
33 duð1Þ3 A1A2 da1 da2

Z
V
r23dc23 dV ¼

Z
S

2
4�

o A1r
ð0Þ
23

� �
oa2

duð0Þ3 �
o A1r

ð1Þ
23

� �
oa2

duð1Þ3 þA1A2r
ð0Þ
23 duð0Þ2 �A1A2

R2
rð0Þ
23 duð0Þ2

�
þ rð1Þ

23 duð1Þ2
�35da1 da2

þ
Z
c

rð0Þ
23 n2du

ð0Þ
3

�
þ rð1Þ

23 n2du
ð1Þ
3

�
dc

Z
V
r31dc31 dV ¼

Z
S

2
4�

o A2r
ð0Þ
31

� �
oa1

duð0Þ3 �
o A2r

ð1Þ
31

� �
oa1

duð1Þ3 þA1A2r
ð0Þ
31 duð0Þ1 �A1A2

R1
rð0Þ
31 duð0Þ1

�
þ rð1Þ

31 duð1Þ1
�35da1 da2

þ
Z
c

rð0Þ
31 n1du

ð0Þ
3

�
þ rð1Þ

31 n1du
ð1Þ
3

�
dc

Z
V
r12dc12 dV ¼�

Z
S

2
4�

o A1r
ð0Þ
12

� �
oa2

duð0Þ1 �
o A2r

ð0Þ
12

� �
oa1

duð0Þ2 þ oA2
oa1

rð0Þ
12 duð0Þ2 þ oA1

oa2
rð0Þ
12 duð0Þ1 �

o A1r
ð1Þ
12

� �
oa2

duð0Þ1

�
o A2r

ð1Þ
12

� �
oa1

duð0Þ2 þ oA2
oa1

rð1Þ
12 duð1Þ2 þ oA1

oa2
rð1Þ
12 duð1Þ1

3
5da1 da2

þ
Z
c

rð0Þ
12 n2du

ð0Þ
1

�
þ rð0Þ

12 n1du
ð0Þ
2 þ rð1Þ

12 n2du
ð1Þ
1 þ rð1Þ

12 n1du
ð1Þ
2

�
dc ð15Þ

where the infinitesimal surface area dA ¼ da1 da2 is defined on the middle surface, the path integral is carried
out along the contour surrounding the middle surface, and the force and moment resultants rðmÞ

kl are given
by

rðmÞ
kl ¼

Z
zmrkl dz; m ¼ 0; 1 ð16Þ

It is worth noting that in deriving Eq. (15), the following identities have been made use of

dV ¼ A1A2 da1 da2 dz; 1þ z=R1 	 1; 1þ z=R2 	 1 ð17Þ

Substituting Eq. (15) into Eq. (10), neglecting the body force, performing all of the integration, taking
variations with respect to all variables, and collecting terms that contain variations of the same displace-
ments, yield a system of motion equations and their corresponding boundary conditions as
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duð0Þ1 :
o A2r

ð0Þ
11

� �
oa1

þ
o A1r

ð0Þ
12

� �
oa2

þ rð0Þ
12

oA1
oa2

� rð0Þ
22

oA2
oa1

þ A1A2
R1

rð0Þ
31 þ A1A2 T

þ
1

�
þ T

�
1

�
¼ A1A2 qð0Þ€uuð0Þ1

�
þ qð1Þ€uuð1Þ1

�
rð0Þ
11 n1 þ rð0Þ

12 n2 ¼ T
ð0Þ
1

duð1Þ1 :
o A2r

ð1Þ
11

� �
oa1

þ
o A1r

ð1Þ
12

� �
oa2

þ rð1Þ
12

oA1
oa2

� rð1Þ
22

oA2
oa1

þ A1A2
R1

rð1Þ
31 � A1A2r

ð0Þ
31 þ A1A2 hT

þ
1

�
� hT

�
1

�
¼ A1A2 qð1Þ€uuð0Þ1

�
þ qð2Þ€uuð1Þ1

�
rð1Þ
11 n1 þ rð1Þ

12 n2 ¼ T
ð1Þ
1

duð0Þ2 :
o A2r

ð0Þ
12

� �
oa1

þ
o A1r

ð0Þ
22

� �
oa2

þ rð0Þ
12

oA2
oa1

� rð0Þ
11

oA1
oa2

þ A1A2
R2

rð0Þ
23 þ A1A2 T

þ
2

�
þ T

�
2

�
¼ A1A2 qð0Þ€uuð0Þ2

�
þ qð1Þ€uuð1Þ2

�
rð0Þ
12 n1 þ rð0Þ

22 n2 ¼ T
ð0Þ
2

duð1Þ2 :
o A2r

ð1Þ
12

� �
oa1

þ
o A1r

ð1Þ
22

� �
oa2

þ rð1Þ
12

oA2
oa1

� rð1Þ
11

oA1
oa2

þ A1A2
R2

rð1Þ
23 � A1A2r

ð0Þ
23 þ A1A2 hT

þ
2

�
� hT

�
2

�
¼ A1A2ðqð1Þ€uuð0Þ2 þ qð2Þ€uuð1Þ2 Þrð1Þ

12 n1 þ rð1Þ
22 n2 ¼ T

ð1Þ
2

duð0Þ3 :
o A2r

ð0Þ
13

� �
oa1

þ
o A1r

ð0Þ
23

� �
oa2

� A1A2
R1

rð0Þ
11 � A1A2

R2
rð0Þ
22 þ A1A2 T

þ
3

�
þ T

�
3

�
¼ A1A2 qð0Þ€uuð0Þ3

�
þ qð1Þ€uuð1Þ3

�
rð0Þ
31 n1 þ rð0Þ

23 n2 ¼ T
ð0Þ
3

duð1Þ3 :
o A2r

ð1Þ
13

� �
oa1

þ
o A1r

ð1Þ
23

� �
oa2

� A1A2
R1

rð1Þ
11 � A1A2

R2
rð1Þ
22 � A1A2r

ð0Þ
33 þ A1A2 hT

þ
3

�
� hT

�
3

�
¼ A1A2 qð1Þ€uuð0Þ3

�
þ qð2Þ€uuð1Þ3

�
rð1Þ
31 n1 þ rð1Þ

23 n2 ¼ T
ð1Þ
3

ð18Þ

where T


i refer to the surface tractions applied at the upper and lower surfaces, respectively, and T

ðmÞ
i and

qðkÞ are given by

T
ðmÞ
i ¼

Z
T izm dz; m ¼ 0; 1

qðkÞ ¼
Z

qzk dz; k ¼ 0; 1; 2

ð19Þ

In a similar manner, one can get the equations of electrostatics and the associated boundary conditions,

duð0Þ :
o A2D

ð0Þ
1

� �
oa1

þ
o A1D

ð0Þ
2

� �
oa2

þ A1A2 wþð þ w�Þ ¼ 0; Dð0Þ
1 n1 þ Dð0Þ

2 n2 ¼ wð0Þ

duð1Þ :
o A2D

ð1Þ
1

� �
oa1

þ
o A1D

ð1Þ
2

� �
oa2

� A1A2D
ð0Þ
3 þ A1A2 hwþð � hw�Þ ¼ 0; Dð1Þ

1 n1 þ Dð1Þ
2 n2 ¼ wð1Þ

duð2Þ :
o A2D

ð2Þ
1

� �
oa1

þ
o A1D

ð2Þ
2

� �
oa2

� 2A1A2D
ð1Þ
3 þ A1A2 h2wþ�

þ h2w�� ¼ 0; Dð2Þ
1 n1 þ Dð2Þ

2 n2 ¼ wð2Þ

ð20Þ

where w
 denotes the external applied surface charge densities at the upper and lower surfaces, respectively,
and DðmÞ

i and wðmÞ have the form of
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DðmÞ
i ¼

Z
zmDi dz; m ¼ 0; 1; 2

wðmÞ ¼
Z

zmwdz; m ¼ 0; 1; 2

ð21Þ

It should be emphasized that Eqs. (20) are the equations for piezoelectric sensors and piezoelectric ac-
tuator with the driving signal being electric surface free charge density. When the driving signal of pi-
ezoelectric shell actuators is electric voltage, i.e., the electric potentials on the upper and lower surfaces are
prescribed, however, the corresponding electrostatics equations and their boundary conditions should be
formulated in a different way. This is discussed as follows.
Denoting the prescribed electric potentials on the upper and lower surfaces by uþ and u�, respectively,

ujz¼h ¼ uþ; ujz¼�h ¼ u� ð22Þ

and combining the forth equation of Eq. (12), we have

uð1Þ ¼ uþ � u�

2h
; uð2Þ ¼ �uð0Þ

h2
þ uþ þ u�

2h2
ð23Þ

With Eqs. (11), (14) and (23), the electrostatics equation and its corresponding boundary condition for
piezoelectric shell actuator with the electric voltage acting as the driving signal are obtained as,

duð0Þ :
o A2 Dð0Þ

1 � Dð2Þ
1 =h2

� �h i
oa1

þ
o A1 Dð0Þ

2 � Dð2Þ
2 =h2

� �h i
oa2

� 2A1A2D
ð1Þ
3

h2
¼ 0;

Dð0Þ
1

�
� Dð2Þ

1 =h2
�
n1 þ Dð0Þ

2

�
� Dð2Þ

2 =h2
�
n2 ¼ wð0Þ � wð2Þ=h2 ð24Þ

Eq. (24) serve as alternative equations to Eq. (20) when the electric boundary conditions are specified by
Eq. (22).
The constitutive relations of the shell can be obtained by integrating the constitutive Eq. (1)

rð0Þ

rð1Þ

� �
¼ A B

B D

� �
eð0Þ

eð1Þ

� �
� P Q R

Q R H

� � Eð0Þ

Eð1Þ

Eð2Þ

8<
:

9=
; ð25Þ

Dð0Þ

Dð1Þ

Dð2Þ

8<
:

9=
; ¼

PT QT

QT RT

RT HT

2
4

3
5 eð0Þ

eð1Þ

� �
þ

K L M
L M N
M N O

2
4

3
5 Eð0Þ

Eð1Þ

Eð2Þ

8<
:

9=
; ð26Þ

where

rðnÞ ¼ rðnÞ
11 ; r

ðnÞ
22 ; r

ðnÞ
33 ; r

ðnÞ
23 ; r

ðnÞ
31 ; r

ðnÞ
12

n oT
eðnÞ ¼ eðnÞ11 ; e

ðnÞ
22 ; e

ðnÞ
33 ; e

ðnÞ
23 ; e

ðnÞ
31 ; e

ðnÞ
12

n oT
; n ¼ 0; 1

DðnÞ ¼ DðnÞ
1 ;DðnÞ

2 ;DðnÞ
3

n oT
EðnÞ ¼ EðnÞ

1 ;EðnÞ
2 ;EðnÞ

3

n oT
; n ¼ 0; 1; 2

It should be noted that the shear correction factors should be taken into account (taken to be 5/6 in the
following numerical studies). The elements in the block matrices given in Eqs. (25) and (26) are defined by
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fAij;Bij;Dijg ¼
Z h

�h
Cij 1; z; z2

� �
dz

fPij;Qij;Rij;Hijg ¼
Z h

�h
eij 1; z; z2; z3
� �

dz

fKij; Lij;Mij;Nij;Oijg ¼
Z h

�h
eij 1; z; z2; z3; z4
� �

dz

The above definitions are valid for functionally graded piezoelectric shells. The equations of electrostatics
and the related boundary conditions for the piezoelectric shells are only given when the driving signal is
surface free charge density imposed upon the major surface. When the driving signal is electric voltage, the
corresponding equations can be obtained straightforward.
By Substituting Eqs. (25) and (26) into Eqs. (18) and (20), the equations of motion and electrostatic in

terms of displacement and electric potential can be written in compact matrix forms as

LdU þ Lcu þ P ¼ Lq
€UU

L�
cU þ Lwu þ Q ¼ 0

ð27Þ

where

U ¼ uð0Þ1 ; uð1Þ1 ; uð0Þ2 ; uð1Þ2 ; uð0Þ3 ; uð1Þ3
n oT

u ¼ uð0Þ;uð1Þ;uð2Þ� �T
P ¼ P ð0Þ

1 ; P ð1Þ
1 ; P ð0Þ

2 ; P ð1Þ
2 ; P ð0Þ

3 ; P ð1Þ
3

n o
Q ¼ qð0Þ; qð1Þ; qð2Þ

� �
P ð0Þ
i ¼ A1A2ðT

þ
i þ T

�
i Þ; P ð1Þ

i ¼ A1A2ðhT
þ
i � hT

�
i Þ; i ¼ 1; 2; 3

qðnÞ ¼ A1A2ðhðnÞwþ þ ð�hÞðnÞw�Þ; n ¼ 0; 1; 2

Differential matrix operators Ld and L�
c are given by

Ld ¼ Ld1
o2

oa21
þ Ld2

o2

oa22
þ Ld3

o2

oa1oa2
þ Ld4

o

oa1
þ Ld5

o

oa2
þ Ld6 ð28Þ

and

L�
c ¼ LTc1

o2

oa21
þ LTc2

o2

oa22
þ LTc3

o2

oa1oa2
� LTc4

o

oa1
� LTc5

o

a2
þ LTc6 ð29Þ

Matrices Lc and Lw are obtained simply by replacing matrix Ld in Eq. (28), respectively. The matrices Ldi,
Lci, Lwi and Lq are listed in Appendix A. This completes the derivation of the basic governing equations and
the corresponding natural boundary conditions for functionally graded piezoelectric generic shells.

3. Method of solution

The developed high order theory for functionally graded piezoelectric shells is then used to study a
simply supported piezoelectric shallow shell subject to applied sinusoidal loads. It can be easily verified that
the following displacement and electric potential functions satisfy the simply supported edge boundary
conditions,
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uð0Þ1 ; uð1Þ1
n o

¼ U ð0Þ;U ð1Þ� �
cos aa1 sin ba2

uð0Þ2 ; uð1Þ2
n o

¼ V ð0Þ; V ð1Þ� �
sin aa1 cos ba2

uð0Þ3 ; uð1Þ3
n o

¼ W ð0Þ;W ð1Þ� �
sin aa1 sin ba2

ð30Þ

uð0Þ;uð1Þ;uð2Þ� �
¼ Wð0Þ;Wð1Þ;Wð2Þ� �

sin aa1 sin ba2 ð31Þ

where a ¼ mp=L1, b ¼ np=L2, m and n are integers, L1 and L2 are the lengths of the shell in the a1 and a2
directions, and the unknown coefficients U ð0Þ, U ð1Þ, V ð0Þ, V ð1Þ, W ð0Þ, W ð1Þ, uð0Þ, uð1Þ, uð2Þ are to be determined.
We note in passing that the form of the governing equations depends upon the applied electric boundary

conditions. Consider first that electric loading is imposed through the surface free charge density. When the
following sinusoidal normal traction and surface free charge densities T



3 sin aa1 sin ba2 and

w
 sin aa1 sin ba2 are applied at the major surfaces, a set of algebraic equations regarding the unknown
coefficients in Eqs. (30) and (31) can be obtained by substituting Eqs. (30) and (31) into (27), giving

½C�fxg ¼ fF g ð32Þ

where [C] is a 9� 9 symmetric coefficients matrix (see, Appendix B), and fxg and fF g are, respectively, the
unknown displacement and electric potential vector and applied load vector,

x¼ U ð0Þ;U ð1Þ;V ð0Þ;V ð1Þ;W ð0Þ;W ð1Þ;Wð0Þ;Wð1Þ;Wð2Þ� �T
F ¼ 0 0 0 0

n
�A1A2ðT

þ
3 þ T

�
3 Þ �A1A2hðT

þ
3 � T

�
3 Þ �A1A2ðwþ þw�Þ�A1A2hðwþ �w�Þ�A1A2h2ðwþ þw�Þ

oT
ð33Þ

Secondly, consider the electric loading given by the electric potentials acting on the major surfaces. Under
such loading conditions, the piezoelectric element functions as actuator. And sinusoidal loadings are as-
sumed on the major surfaces, i.e., T



3 sin aa1 sin ba2 and u
 sin aa1 sin ba2. The corresponding algebraic

equations related to the unknowns in Eqs. (30) and (31) now read

½eCC�fexxg ¼ feFF g ð34Þ

where

fexxg ¼ U ð0ÞU ð1ÞV ð0ÞV ð1ÞW ð0ÞW ð1ÞWð0Þ� �T
feFF g ¼ 0 0 0 0

n
� A1A2 T

þ
3

�
þ T

�
3

�
� A1A2h T

þ
3

�
� T

�
3

�
0
oT ð35Þ

and ½eCC� is a 7� 7 symmetric matrix related to [C] by

eCCij ¼ Cij; i6 6; j6 6eCC7j ¼ C7j � C9j=h2; j6 6eCC77 ¼ C77 � C99=h2
ð36Þ

It should be noted that following the above procedure solutions for non-sinusoidal loading can also be
obtained using the Fourier series expansion method.
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4. Numerical results

To validate the developed high order theory, we first apply it to a simply supported homogeneous pi-
ezoelectric shell subjected to sinusoidal mechanical loading on the major surfaces (i.e., the upper and lower
surfaces of the shell). Since exact three-dimensional theory of this problem is available (Chen, 1997), a
comparison between the present theory solution and exact solution is possible. The homogeneous piezo-
electric shell is assumed to be made of PZT-4, with the material constants given (Berlincourt et al., 1964)

C11 ¼ 13:9; C12 ¼ 7:78; C13 ¼ 7:43; C33 ¼ 11:5; C44 ¼ 2:56 ð1010 PaÞ
e31 ¼ �5:2; e33 ¼ 15:1; e15 ¼ 12:7 ðC=m2Þ; �11 ¼ 6:46; �22 ¼ 5:62 ðCV=mÞ

ð37Þ

where the poling direction is along the radial direction.
By assuming the Lame parameters and curvilinear radii to be A1 ¼ A2 ¼ 1, R1 ¼ R0, R2 ¼ 1 where R0 is

the radius of the middle surface of the shell, the developed high order theory can be applied to the circular
cylindrical shell. In numerical simulations, the following geometrical parameters for the shell are used:
R0 ¼ 1 m, L1 ¼ p=3, L2 ¼ 4 m. Two parameters are introduced to describe the thickness effects, namely
S ¼ R0=2h, y ¼ z=2h. Unless stated otherwise, S ¼ 5 and 50 are assumed throughout the following calcu-
lations, representing thick and thin shells, respectively. When the homogeneous piezoelectric shell is only
subjected to an electric loading in accordance with uþ ¼ u sin aa1 sin ba2 whilst T 


3 ¼ 0, variation of the
induced radial displacement (i.e., the transverse displacement) in the radial direction is given in Fig. 2. On
the other hand when a mechanical loading in accordance with Tþ

3 ¼ T sin aa1 sin ba2 with its electric
boundary conditions being u
 ¼ 0, distribution of the electric potential in the radial direction is given in
Fig. 3. In Figs. 2 and 3, solid and broken lines denote the present high order theory and exact solutions
(Chen, 1997), respectively. It can be seen from Figs. 2 and 3 that the high order theory successfully captures
the features revealed by the exact solution, that is, the respective linear and parabolic distributions of the
resulting radial displacement and electric potential. Notice that the significant change of the transverse
displacement in the shell thickness direction suggests a non-negligible transverse normal strain, which has
so far been ignored in most published models. For consistent comparison purpose, in Fig. 2,

Fig. 2. Radial distribution of the displacement euu3 for homogeneous piezoelectric shells under the loading uþ ¼ 1 V, T

3 ¼ 0. Results are

shown for shells of three thickness ratios (S ¼ 5, 10 and 50). Solid and broken lines denote the present high order theory and exact

solutions, respectively.
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euu1 ¼ e31=S2�11u1, euu3 ¼ e31=S2�11u3, euu ¼ 1=V0u are introduced, and u1 ¼ C11=2hS4u1, u3 ¼ C11=2hS4u3,
u ¼ e31=2hS2u are introduced in Fig. 3. They will be used in following figures when the applied loading is
electric potential on the upper and lower surfaces or surface traction, respectively. Now, consider the shell is
made of functionally graded piezoelectric materials, in which only piezoelectric coefficients in Eq. (37) are
varied with respect to z while other material properties are the same across the thickness. Two cases are
numerically investigated: a linear variation (i.e., eijðzÞ ¼ eijð1þ z=hÞ) and a parabolic variation (i.e.,
eijðzÞ ¼ 3eijð1=2þ z=2hÞ2) of the piezoelectric coefficients, with z in the range of �h to h. Note that the

Fig. 3. Radial distribution of the electric potential u for homogeneous piezoelectric shells under the loading Tþ
3 ¼ 1 Pa, u
 ¼ 0. Results

are shown for shells of three thickness ratios (S ¼ 5, 10 and 50). Solid and broken lines denote the present high order theory and exact

solutions, respectively.

Fig. 4. The electric potential u of graded and homogeneous piezoelectric shells for different thickness under loading (Tþ
3 ¼ 1 Pa,

w
 ¼ 0).

X.-H. Wu et al. / International Journal of Solids and Structures 39 (2002) 5325–5344 5335



particular variations of the piezoelectric coefficient are specified to ensure their averaged values along the
thickness direction are the same as those of the homogeneous piezoelectric shell.
Figs. 4–7 illustrate the variation of the electric potential u, displacements (circumferential component u1

and radial component u3), and the circumferential normal stress r11 induced by the mechanical loading with
T

þ
3 ¼ 1 Pa and T

�
3 ¼ D



r ¼ 0, where the electric boundary conditions are adopted to model piezoelectric

sensors. In each figure, responses of the shell made of three constituent materials, i.e., uniformly (abbre-
viated as �homo� in the figures), linearly and parabolically (abbreviated as �linear� and �parabolic�) varied
piezoelectric coefficients, are included for the interests of comparison. It is seen from Fig. 4 that under

Fig. 5. The out of plane displacement u3 of graded and homogeneous piezoelectric shells for different thickness under loading (Tþ
3 ¼ 1

Pa, w
 ¼ 0).

Fig. 6. The in-plane displacement u1 of graded and homogeneous piezoelectric shells for different thickness under loading (Tþ
3 ¼ 1 Pa,

w
 ¼ 0).
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external mechanical loading the induced electric potential for shell with parabolically distributed piezo-
electric coefficients is the biggest in magnitude, followed in sequence by those for shells with linearly and
uniformly distributed piezoelectric coefficients. In other words, the functionally graded piezoelectric ma-
terials are more sensitive to external loading, an important advantage of functionally graded piezoelectric
materials over homogeneous ones when acted as sensors. Moreover, the non-linear distribution of the
electric potential demonstrates again the necessity for including the second order term in Eq. (12). Note
from Fig. 5 that for both thin and thick shells varying the piezoelectric coefficient from uniform to para-

Fig. 7. The in-plane stress r11 of graded and homogeneous piezoelectric shells for different thickness under loading (Tþ
3 ¼ 1 Pa,

w
 ¼ 0).

Fig. 8. The electric potential euu of graded and homogeneous piezoelectric shells for different thickness under loading (uþ ¼ 1 V,

T

3 ¼ 0).
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bolic distribution in the thickness direction has noticeable effect on the out of plane displacement u3.
However, the effect is negligible upon the in-plane displacement u1 and stress r11, see Figs. 4–7.
Another important usage of piezoelectric materials is that they can be used as actuators in smart

structures. To mimic such situations, the loading with T


3 ¼ 0, u� ¼ 0, and uþ ¼ 1 V is applied to the upper

and lower surfaces of a moderate thick shell with S ¼ 5. The high order theory predicted corresponding
responses for the electric potential, displacements, and stress are plotted in Figs. 8–11. Fig. 8 shows the non-
linear variation of the electric potential across the shell thickness direction. It is clear from Fig. 8 that the
electric potential within functionally graded piezoelectric shells is bigger than that within the homogeneous

Fig. 9. The out of plane displacement euu3 of graded and homogeneous piezoelectric shells for different thickness under loading (uþ ¼ 1

V, T

3 ¼ 0).

Fig. 10. The in-plane displacement euu1 of graded and homogeneous piezoelectric shells for different thickness under loading (uþ ¼ 1 V,

T

3 ¼ 0).
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one. This also explains why the induced out of plane displacement euu3 for graded shells is greater (see, Fig.
9). We can thus conclude that the functionally graded piezoelectric materials are better candidates than
homogeneous piezoelectric materials when used as constituent materials for actuators. Again, Figs. 10 and
11 reveal that varying the piezoelectric properties has negligible effect on the in-plane displacement euu1 and
stress r11.

5. Conclusion

A high order theory model on the basic governing equations and the corresponding natural boundary
conditions for functionally graded piezoelectric generic shells has been derived. The formulae given here
can be used to obtain the governing equations for other piezoelectric structures such as beams and plates,
treated as degenerated systems of generic shells. With the developed formulations, the electromechanical
characteristic of a simply supported inhomogeneous and homogeneous shell is studied. The obtained results
agree well with available exact solutions. The assumed transverse normal strain and parabolic variation of
the electric potential in the high order theory are found to be essential for accurate modeling. The sensing
and actuating mechanisms of a functionally graded piezoelectric shell are investigated. The obtained results
show that, in terms of sensing and actuating, the functionally graded piezoelectric materials are superior to
homogeneous piezoelectric materials.
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Fig. 11. The in-plane stress r11 of graded and homogeneous piezoelectric shells for different thickness under loading (uþ ¼ 1 V,

T

3 ¼ 0).
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Appendix A

The matrices appearing in Eq. (28) are expressed as follows:
Matrix Ld1:

Ld1ð1; 1Þ ¼ A11A2=A1; Ld1ð1; 2Þ ¼ Ld1ð2; 1Þ ¼ B11A2=A1; Ld1ð2; 2Þ ¼ D11A2=A1
Ld1ð3; 3Þ ¼ A66A2=A1; Ld1ð3; 4Þ ¼ Ld1ð4; 3Þ ¼ B66A2=A1; Ld1ð4; 4Þ ¼ D66A2=A1
Ld1ð5; 5Þ ¼ A55A2=A1; Ld1ð5; 6Þ ¼ Ld1ð6; 5Þ ¼ B55A2=A1; Ld1ð6; 6Þ ¼ D55A2=A1

The other components are zero.
Matrix Ld2:

Ld2ð1; 1Þ ¼ A66A1=A2; Ld2ð1; 2Þ ¼ Ld2ð2; 1Þ ¼ B66A1=A2; Ld2ð2; 2Þ ¼ D66A1=A2
Ld2ð3; 3Þ ¼ A22A1=A2; Ld2ð3; 4Þ ¼ Ld2ð4; 3Þ ¼ B22A1=A2; Ld2ð4; 4Þ ¼ D22A1=A2
Ld2ð5; 5Þ ¼ A44A1=A2; Ld2ð5; 6Þ ¼ Ld2ð6; 5Þ ¼ B44A1=A2; Ld2ð6; 6Þ ¼ D44A1=A2

The other components are zero.
Matrix Ld3:

Ld3ð1; 3Þ ¼ Ld3ð3; 1Þ ¼ A12 þ A66; Ld3ð1; 4Þ ¼ Ld3ð4; 1Þ ¼ B12 þ B66
Ld3ð2; 3Þ ¼ Ld3ð3; 2Þ ¼ B12 þ B66; Ld3ð2; 4Þ ¼ Ld3ð4; 2Þ ¼ D12 þ D66

The other components are zero.
Matrix Ld4:

Ld4ð1; 5Þ ¼ �Ld4ð5; 1Þ ¼ A2ðA11=R1 þ A12=R2 þ A55=R1Þ
Ld4ð1; 6Þ ¼ �Ld4ð6; 1Þ ¼ A2ðA13 þ B11=R1 þ B12=R2 þ B55=R1Þ
Ld4ð2; 5Þ ¼ �Ld4ð5; 2Þ ¼ A2ðB11=R1 þ B12=R2 þ B55=R1 � A55Þ
Ld4ð2; 6Þ ¼ �Ld4ð6; 2Þ ¼ A2ðB13 þ D11=R1 þ D12=R2 � B55 þ D55=R1Þ

The other components are zero.
Matrix Ld5:

Ld5ð3; 5Þ ¼ �Ld5ð5; 3Þ ¼ A1ðA12=R1 þ A22=R2 þ A44=R2Þ
Ld5ð3; 6Þ ¼ �Ld5ð6; 3Þ ¼ A1ðA23 þ B12=R1 þ B22=R2 þ B44=R2Þ
Ld5ð4; 5Þ ¼ �Ld5ð5; 4Þ ¼ A1ðB12=R1 þ B22=R2 þ B44=R2 � A44Þ
Ld5ð4; 6Þ ¼ �Ld5ð6; 4Þ ¼ A1ðB23 þ D12=R1 þ D22=R2 þ D44=R2 � B44Þ

The other components are zero.
Matrix Ld6:

Ld6ð1; 1Þ ¼ �A55A1A2=R21; Ld6ð1; 2Þ ¼ Ld6ð2; 1Þ ¼ A55A1A2=R1 � B55A1A2=R21
Ld6ð2; 2Þ ¼ �2B55A1A2=R1 � D55A1A2=R21 � A55A1A2

Ld6ð3; 3Þ ¼ �A44A1A2=R22
Ld6ð3; 4Þ ¼ Ld6ð4; 3Þ ¼ A44A1A2=R2 � B44A1A2=R22
Ld6ð4; 4Þ ¼ 2B44A1A2=R2 � D44A1A2=R22 � A44A1A2

Ld6ð5; 5Þ ¼ �A11A1A2=R21 � 2A12A1A2=ðR1R2Þ � A22A1A2=R22
Ld6ð5; 6Þ ¼ �A11A1A2=R21 � 2A12A1A2=ðR1R2Þ � A22A1A2=R22
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The other components are zero.
Matrix Lc1:

Lc1ð5; 1Þ ¼ P15A2=A1; Lc1ð5; 2Þ ¼ Lc1ð6; 1Þ ¼ Q15A2=A1
Lc1ð5; 3Þ ¼ Lc1ð6; 2Þ ¼ R15A2=A1; Lc1ð6; 3Þ ¼ H15A2=A1

The other components are zero.
Matrix Lc2:

Lc2ð5; 1Þ ¼ P24A1=A2; Lc2ð5; 2Þ ¼ Lc2ð6; 1Þ ¼ Q24A1=A2
Lc2ð5; 3Þ ¼ Lc2ð6; 2Þ ¼ R24A1=A2; Lc2ð6; 3Þ ¼ H24A1=A2

The other components are zero.
Matrix Lc4:

Lc4ð1; 1Þ ¼ P15A2=R1; Lc4ð1; 2Þ ¼ ðP31 þ Q15=R1ÞA2; Lc4ð1; 3Þ ¼ ð2Q31 þ R15=R1ÞA2
Lc4ð2; 1Þ ¼ ð�P15 þ Q15=R1ÞA2; Lc4ð2; 2Þ ¼ ðQ31 � Q15 þ R15=R1ÞA2
Lc4ð2; 2Þ ¼ ð2R31 � R15 þ H15=R1ÞA2;

The other components are zero.
Matrix Lc5:

Lc5ð3; 1Þ ¼ P24A1=R2; Lc4ð3; 2Þ ¼ ðP32 þ Q24=R2ÞA1; Lc4ð3; 3Þ ¼ ð2Q32 þ R24=R2ÞA1
Lc4ð4; 1Þ ¼ ð�P24 þ Q24=R2ÞA1; Lc4ð4; 2Þ ¼ ðQ32 � Q24 þ R24=R2ÞA1
Lc4ð4; 3Þ ¼ ð2R32 � R24 þ H24=R2ÞA1

The other components are zero.
Matrix Lc6:

Lc6ð5; 2Þ ¼ �ðP31=R1 þ P32=R2ÞA1A2; Lc6ð5; 3Þ ¼ �2ðQ31=R1 þ Q32=R2ÞA1A2
Lc6ð6; 2Þ ¼ �ðQ31=R1 þ Q32=R2 þ P33ÞA1A2; Lc6ð6; 3Þ ¼ �2ðR31=R1 þ R32=R2 þ Q33ÞA1A2

The other components are zero.
Matrix Lw1:

Lw1 ¼
�K11A2=A1 �L11A2=A1 �M11A2=A1
�L11A2=A1 �M11A2=A1 �N11A2=A1
�M11A2=A1 �N11A2=A1 �O11A2=A1

2
4

3
5

Matrix Lw2:

Lw2 ¼
�K22A1=A2 �L22A1=A2 �M22A1=A2
�L22A1=A2 �M22A1=A2 �N22A1=A2
�M22A1=A2 �N22A1=A2 �O22A1=A2

2
4

3
5

Matrix Lw3 ¼ Lw4 ¼ Lw5 ¼ 0.
Matrix Lw6:

Lw6 ¼
0 0 0
0 K33A1A2 2L33A1A2
0 2L33A1A2 4M33A1A2

2
4

3
5
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Matrix Lq:

Lq ¼

qð0Þ qð1Þ 0 0 0 0
qð1Þ qð2Þ 0 0 0 0
0 0 qð0Þ qð1Þ 0 0
0 0 qð1Þ qð2Þ 0 0
0 0 0 0 qð0Þ qð1Þ

0 0 0 0 qð1Þ qð2Þ

2
6666664

3
7777775

Appendix B

C11 ¼ � a2A2=A1A11
�

þ b2A1=A2A66 þ A1A2A55=R21
�

C12 ¼ A1A2A55=R1 � a2A2=A1B11 � b2A1=A2B66 � A1A2B55=R21
C13 ¼ �abðA12 þ A66Þ
C14 ¼ �abðB12 þ B66Þ
C15 ¼ aA2 A11=R1ð þ A12=R2 þ A55=R1Þ
C16 ¼ aA2 A13ð þ B11=R1 þ B12=R2 þ B55=R1Þ
C17 ¼ aA2P15=R1
C18 ¼ aA2ðP31 þ Q15=R1Þ
C19 ¼ aA2ðR15=R1 þ 2Q31Þ
C22 ¼ � a2A2=A1D11

�
þ b2A1=A2D66 þ A1A2D55=R21 þ A1A2A55 � 2B55A1A2=R21

�
C23 ¼ �abðB12 þ B66Þ
C24 ¼ �abðD12 þ D66Þ
C25 ¼ aA2ð � A55 þ B11=R1 þ B12=R2 þ B55=R1Þ
C26 ¼ aA2 D11=R1ð þ D12=R2 þ D55=R1 þ B13 � B55Þ
C27 ¼ aA2ð � P15 þ Q15=R1Þ
C28 ¼ �aA2 R15=R1ð þ Q31 � Q15Þ
C29 ¼ aA2 2R31ð � R15 þ H15=R1Þ
C33 ¼ � a2A2=A1A66

�
þ b2A1=A2A22 þ A1A2A44=R22

�
C34 ¼ A1A2A44=R2 � a2A2=A1B66 � b2A1=A2B22 � A1A2B44=R22
C35 ¼ bA1 A12=R1ð þ A22=R2 þ A44=R2Þ
C36 ¼ bA1 A23ð þ B12=R1 þ B22=R2 þ B44=R2Þ
C37 ¼ bA1P24=R2
C38 ¼ bA1 P32ð þ Q24=R2Þ
C39 ¼ bA1 R24=R2ð þ 2Q32Þ
C44 ¼ �a2A2=A1D66 � b2A1=A2D22 � A44A1A2 þ 2B44A1A2=R2 � A1A2D44=R22
C45 ¼ bA1ð � A44 þ B12=R1 þ B22=R2 þ B22=R2Þ
C46 ¼ bA1 D12=R1ð þ D22=R2 þ D44=R2 þ B23 � B44Þ
C47 ¼ bA1ð � P24 þ Q24=R2Þ
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C48 ¼ bA1 Q32ð � Q24 þ R24=R2Þ
C49 ¼ bA1 2R32ð � R24 þ H24=R2Þ
C55 ¼ � a2A2=A1A55

�
þ b2A1=A2A44 þ A1A2=R21A11 þ 2A1A2=ðR1R2ÞA12 þ A1A2=R22A22

�
C56 ¼ �ða2A2=A1B55 þ b2A1=A2B44 þ A1A2=R1A13 þ A1A2=R2A23 þ A1A2=R21B11

þ 2A1A2=ðR1R2ÞB12 þ A1A2=R22B22Þ
C57 ¼ � a2A2=A1P15

�
þ b2A1=A2P24

�
C58 ¼ � a2A2=A1Q15

�
þ b2A1=A2Q24 þ A1A2=R1P31 þ A1A2=R2P32

�
C59 ¼ � a2A2=A1R15

�
þ b2A1=A2R24 þ 2A1A2=R1Q31 þ 2A1A2=R2Q32

�
C66 ¼ ða2A2=A1D55 þ b2A1=A2D44 þ A1A2=R21D11 þ 2A1A2=ðR1R2ÞD12 þ A1A2=R22D22

þ 2A1A2=R1B13 þ 2A1A2=R2B23 þ A1A2C33

C67 ¼ � a2A2=A1Q15

�
þ b2A1=A2Q24

�
C68 ¼ � a2A2=A1R15

�
þ b2A1=A2R24 þ A1A2=R1Q31 þ A1A2=R2Q32 þ A1A2P33

�
C69 ¼ � a2A2=A1H15

�
þ b2A1=A2H24 þ 2A1A2=R1R31 þ 2A1A2=R2R32 þ 2A1A2Q33

�
C77 ¼ a2A2=A1K11 þ b2A1=A2K22

C78 ¼ a2A2=A1L11 þ b2A1=A2L22

C79 ¼ a2A2=A1M11 þ b2A1=A2M22

C88 ¼ a2A2=A1M11 þ b2A1=A2M22 þ K33A1A2

C89 ¼ a2A2=A1N11 þ b2A1=A2N22 þ 2L33A1A2

C99 ¼ a2A2=A1O11 þ b2A1=A2O22 þ 4M33A1A2:
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