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Abstract

A high order theory is presented to examine the electromechanical behavior of piezoelectric generic shells with
graded material properties in the thickness direction. Different types of charge equations, depending upon whether the
driving signal of piezoelectrics is free charge or electric voltage, have been derived. The obtained equations can be
readily reduced to typical structures, such as beams, plates and circular cylindrical shells. The high order theory has
been used to study the sensing and actuating behavior of a simply supported inhomogeneous piezoelectric circular
cylindrical shell and, for comparison and validation purposes, a homogeneous shell. Comparison between the obtained
numerical results to those available exact solutions for homogeneous shell shows that the developed theory is accurate.
The effects of graded material properties on the piezoelectrically induced displacements, stresses, electric potential and
electric displacements distributions are also quantified, clearly showing the advantage of functionally graded piezo-
electrics over homogeneous ones in terms of the usages as sensors and actuators.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, the use of functionally graded materials (FGMs) has gained intensive attention especially
in extreme high temperature environment, as reflected in numerous papers on this subject (e.g., Niino, 1990;
Koizumi, 1993; Reddy and Chin, 1998). FGMs are inhomogeneous materials of which the material
properties vary continuously in one (or more) direction(s). This is achieved by gradually changing the
composition of the constituent materials along one direction, usually the thickness direction from one
surface to another, to obtain smooth variation of material properties and optimum response to externally
applied thermo-mechanical loading. FGMs are developed now for the general use as structural components
in high temperature environments and being strongly considered as a potential structural material candi-
date for future high-speed spacecraft. Typical FGMs are made from a mixture of ceramic and metal, or a
combination of different metals or different ceramics that are appropriate to achieve the desired objective.

The concept of FGMs has been applied to electronics, optics, chemistry, biomedical and many other
fields. For intance, FGMs with a gradient of piezoelectric properties can be used for ultrasonic transducers
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or, as a natural application, for bending actuators (Zhu and Meng, 1996). Typical piezoelectric ceramic
actuators include unimorph benders, bimorph benders and flextensional composite structures. However,
those actuators usually have a non-uniform distribution of stresses or stressed metal to ceramic bonds, or
both; the bonding agent may crack or peel off at low temperature and may creep at high temperature, which
could lead to reliability and lifetime limitations. A better way to solve the above problems is using FGM
actuators which are monolithic type piezoelectric devices without a bonding agent. The failures originated
from internal debonding or from stress concentration developed in conventional bimorphs are avoided.
Significantly increased durability and reliability can thus be achieved. The depth dependence of (func-
tionally graded) piezoelectric property in PVDF films was obtained for a variety of poling conditions and
field-reversal poling can be used to increase gradient activity (Marcus, 1981). A number of preparation
routes have been developed in order to produce piezoelectric ceramics with a one-dimensional gradient of
the chemical composition. The subsequent poling process transforms the gradient of the chemical com-
position into a gradient of the piezoelectric coefficients by different mechanisms. For example, a gradient of
the electrical conductivity is suited, which can be realized by a gradient of dopants or a chemical reduction
of one side of oxide ceramic (Wu et al., 1996).

Following exact study of the responses of piezoelectric structures (limited to simple geometries such as
simply supported plate strips, rectangular plates and circular cylindrical shells) to external loading (see, for
example Bisegna and Maceri, 1996; Chen et al., 1996, 1999), much effort has been devoted to the inves-
tigation of the behavior of laminated piezoelectric plates and shells, in which the material properties are
piecewise constant. Sosa (1992) developed a transfer matrix approach to investigate the electromechanical
coupling characteristics of infinite laminated piezoelectric plates. By extending the work of Pagano (1970)
for pure elastic laminates, Heyliger (1997) presented some exact solutions for laminated piezoelectric plates.
These approaches have been extended widely to the analyses of composite laminated plates and shells for
different materials and loads (Xu et al., 1997; Lee and Jiang, 1996). However, the aforementioned ap-
proaches are not suitable piezoelectric plates and shells with continuously varied material properties. Reddy
and Cheng (2001) obtained an asymptotic solution of a FG structure (a functionally graded plate attached
on its bottom surface by a piezoelectric actuator) by using the transfer matrix formulation in combination
with the asymptotic expansion. Shell structures are more complex compared to plates. So far, to the au-
thors’ knowledge, minimal or no work has been presented in the literatures for functionally graded pi-
ezoelectric shells.

For piezoelectric structures with more complex geometry, approximate while powerful analytical models
of beam, plate and shell type structures are preferred in order to facilitate the engineering design. Significant
progress in this direction has been achieved for the past decade. Kim and Jones (1991) and Rivory et al.
(1994) independently improved the Crawley and de Luis models (1987) for piezoelectric beams. The im-
proved models were based upon either the Bernouli-Euler beam theory or the Timoshenko beam theory
and were shown in better agreement with experimental results. Tzou and his co-workers (e.g., Tzou and
Gadre, 1989; Tzou and Howard, 1994) conducted a series studies on piezoelectric and thermopiezoelectric
shells. Most of their studies were based on the classic shell theory. Analogous to the Mindlin plate theory,
Miller and Abramovich (1995) introduced a model to accommodate the transverse shear deformation of
self-sensing piezoelectric shells. Recent studies on this aspect include those by Yang (1999), Wang and Yang
(2000), Bisegna and Caruso (2001), among others.

In this paper, a high order theory is presented to model the electromechanical behavior of functionally
graded piezoelectric generic shells. The generalized Hamilton’s principle, which incorporates different
electric boundary conditions as well as mechanical boundary conditions, is utilized to obtain the governing
equations of motion. Deduction of the governing equations for piezoelectric beams, plates and circular
cylindrical shells from the high order piezoelectric generic shell theory is briefly discussed. In the light of the
formulae presented herein, a simply supported anisotropic inhomogeneous piezoelectric circular cylindrical
shell and, for comparison and validation purposes, a homogeneous shell is considered in illustrative ex-
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amples. Comparison of the numerical results for the homogeneous shell with those available exact solutions
shows that the derived model is satisfactory. The effects of graded material properties on the piezoelec-
trically induced displacements, stresses, electric potential and electric displacements distributions are also
quantified.

2. The motion and electrostatics equations

Since the governing equations for beam, plate and circular cylindrical shell type structures can be de-
duced directly from those of generic shells, we start the derivation of the equations for piezoelectric generic
shells by introducing the co-ordinated system used in this paper. Fig. 1 shows a geometric definition of the
piezoelectric shell. An orthogonal curvilinear co-ordinate system defined by three unit vectors oy, o,, and o3
is attached to the structure. The thickness of the shell is assumed to be 24. The Lame parameters and the
radii of curvature related to o and o, are denoted by 4;, 4,, R; and R,, respectively, and are independent of
transverse ordinate when the shell is thin, i.e., # < R; and & < R;. (In the following, z and a3 will be used
simultaneously.)

Linear constitutive equations of functionally graded piezoelectric materials with thickness-graded ma-
terial properties are

0ij = Cijuér — enjEr (1)
D; = eyen + enky

The materials property gradient is assumed to be in the thickness direction, i.e.,
Cijt = Ciju (2); Cij = ekij(Z); €ir = €i(2) (2)

In the general theory of shell, the strain components and the electric field components in above equations
are related to the displacement components u; (i = 1,2,3) and the electric potential ¢ by the following
relations:

e aul + 6A1 + Uus e auz + aAz Uus
= u — = u _—
= A]@OC] 2A1A260€2 R] ’ 2 A26a2 1A1A260€1 R2
e — 6u3 . - 6u2 6u3 175}
B 6063 k 73 = 6063 Azaflz R2
Ou Ou u
S L B 3)
6063 Alaoq R]
Ou, Ouy 04, 04,
Y12

- AzaOCQ +A160€1 B uzAlAzaOtl - AlAzaOCz
Yij = 2¢y5, i#j

o3 (2z)

Fig. 1. Configuration of a generic piezoelectric shell.
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For a piezoelectric shell subject to a prescribed surface traction T; and a surface free charge density W,
the Hamilton’s principle states

5/0” dt</V(K—H)dV—/S T,-SuideL/S»WSquS) —0 (5)

E=-

where
K—Xkinetic density K = 1piu; (6)
H—electric enthalpy density H = 1o, — iD;E; (7)
The constitutive equation (1) are related to the electric enthalpy density by
OH OH
. D=—— 8
7= Be; OF, ®

Substituting Egs. (3), (4), (6)—(8) into Eq. (5), produces

n
fy v A\ Sw

The equation can be further expressed as two independent equations

/akISSk/dV:—/pil,-SM,-dV—f—/ T:du;dS (10)
Vv Vv Se

v S
In the present theory, the displacement and the electric potential fields are assumed to be

0)
1

wy (o, 000, 03) = 1l (o, ) + 2zl (011, o)
s (o1, 000, 03) = 1l (o, 00) + 2zl (011, o) (12)
u3(oc1,oz2,oc3) u§° (061,062) Mgl (061,062)

M

oo, 00,03) = @ (oy, 00) + 20 (01, 0) + 229 (e11, o02)

where ug ) is introduced to account for the transverse normal strain when the piezoelectric structure is used

as actuator, and ¢® represents the parabolic variation of the electric potential in the thickness direction.

Since the assumed displacements involve linear terms and the electric potential contains both linear and

quadratic terms, the developed theory is called a high order theory, compared to Mindlin type theories.
Substituting Eq. (12) into Eq. (3), yields the strain and the electric field components as

& = sg(i) + zsg?; & = gg + 28512); &3 = 8(3(;)

(0) (1) (0) (1) (0) (1) (13)
Y23 =723 20235 Vs =7V T2 Vi =Y T2
E =B +2E") + 2EP; E,=EY +2E) + 2EY; Ey = EY + 22E)" (14)

where detail expressions for a,j), (-jl) etc. can be obtained easily and are omitted for the sake of brevity.
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Substituting above strain expressions into the left hand side of Eq. (10) produces

[ @(Aszﬁ?)) o4 A4 @(Azaﬁll)) o4
/ o110edV = / e 4 gl ey, 0 B2 05,0 N L0y gl a—lﬁu(zl)
14 s [£%)

aal 1 11 aaz 2 Rl 11 3 aal 1

A4
I ]132g§ll>8ugl)}do(ld(xz+/(gﬁ?)n@u(lo)+o-§11)n16u§1))dc
1

c

i a(Ala(zg)) 0) 04 A A a(Ala(zlz)) 1y 04
SendV = | | ———"Lou) —2oul + 2260 sul) — L sul! )
\/’/()‘22 &2 A 60(2 +a 22 a Rz 0G5, Olly 60(2 +o 22 a Uy

A4,
R,

/0'336833de/Ggg)Bugl)AlAde(lddz
v N

aé?&té”} doy do, + / <a$)n28u§0) + aglz)nzﬁugl))dc

M ol4 (0) ol4 (1)

1923 ) ) 1923 ) Os 0 Aide (05 0 )5 1)

/ 338y, dV = / — bl - Sul) + A1 4,00 50 — (023 ul? + ol 5142) dot; dory
v s ot 0oty R,

+/ (a(zg)nzﬁugo) + aé?nﬂugl))dc

[ 9(4,6Y d( 4,0

2731 ) ¢ 0 2%31) ¢ 05 _Ada o0 s 1)

0310y, dV = i duy’ — 5 Suy’ +A4,4,05, duy’ — R (031 du,’ + a3, duy ) doy do,
14 s 1231 o 1

+/ (ag(i)nlfiugo) +agll>n15ugl))dc
c

G(Alaﬁg)) G(AZGE?) 6A aA a(Alaglz))
_ _ (O (0) 2 (0) (0) 1 _(0)g (0) (0)
/ 1y, dV = /S S a0 gt s Ledu - = =~

1)
0 (AN‘Z ) 0 04>

ol 04, 0)
_TS +a— 6 +a— 12 61/{1 dOCl dOCz
+ / (a(lg)nZSM(lo) + og(?nlSu(zO) + 0'(112)112814(11) + a(llz)nl&él))dc (15)

where the infinitesimal surface area d4 = da; do, is defined on the middle surface, the path integral is carried
out along the contour surrounding the middle surface, and the force and moment resultants a< " are given
by

ak, /z’”ak,dz m=0,1 (16)
It is worth noting that in deriving Eq. (15), the following identities have been made use of

dV =A414,doydopdz; 14+z/Ri=1; 1+z/Ry=1 (17)
Substituting Eq. (15) into Eq. (10), neglecting the body force, performing all of the integration, taking

variations with respect to all variables, and collecting terms that contain variations of the same displace-
ments, yield a system of motion equations and their corresponding boundary conditions as



5330 X.-H. Wu et al. | International Journal of Solids and Structures 39 (2002) 5325-5344

o(40ll) B(ael)) | a4 oAy AA
g g e g e el s A (T4 T
= A4, <p<0 011 n + 0'12 n, = T(IO)
a(Azo?l) (Alffn ) o4 04, A4 o
ol = e — AyA0l) + Ay (WT — 1Y)

:AlAz(p<l M1>O'11}’l] +O']2112 T(ll)

a(Azaig) ( 1022) 004 04 AA
5l - 2 _ 0% 2590 AA( T*)
U ooy +o 12 6 —o0n ot +—— R, ‘723 + 2 +1,
= 4,4, <p<0 i) o Vny + 6y =T
(18)
a(Azaglz) ( 105 ) ) o4 04 AA
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U ooty 12 6 —0n aoc2+ R, 073 142055 + 4143 2 2
=
:AlAz(p(l) i 4 u () )alznl + 022 ny, = T(z)
6(A2‘7§3) ( ) 4,4 4,4
5 <0>: 2 (0) 142 (0) A4 (T+ T—)
U ooty oy R2‘722+12 3t 15
_ (1) (0)
AAz(p u )0 +023n2 T,
a(‘42‘713> ( 1‘72%) A4 A A _ _
5u<31> : ou 2 (1) Ile 20'(212) —AlAzo'g? +A1A2 (hT;r — hT;)
1 2

.. .. =(1
:AlAz(p u3 —|—p u3 >ngln1+623>n2:T(3)

where Tl.i refer to the surface tractions applied at the upper and lower surfaces, respectively, and Tﬁm) and
p®) are given by

7" :/T,-zmdz, m=0,1

(19)
p")—/pzkdz k=0,1,2

In a similar manner, one can get the equations of electrostatics and the associated boundary conditions,

a(AzD§°>) a(Alz)gO))

5 o, + o + 41 4,(wH +w) = 0; D(lo)nl + D(20>n2 =w"
a(A2D§1>) G(AID(ZI))
5@(1) : o + o _AIAZDgO) +A1A2(hw+ _ hw*) —0; l)gl)n1 +Dgl>n2 — %M (20)
(o) elurt) | o
89 : oL = L = 2D+ A (B 4 1) = 05 Dy + DYy =
1 2

where w w denotes the external applied surface charge densities at the upper and lower surfaces, respectively,
and D ) and W™ have the form of
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Dﬁ’”):/sz,-dz, m=0,1,2
(21)
wm :/z’”Wdz, m=0,12

It should be emphasized that Egs. (20) are the equations for piezoelectric sensors and piezoelectric ac-
tuator with the driving signal being electric surface free charge density. When the driving signal of pi-
ezoelectric shell actuators is electric voltage, i.e., the electric potentials on the upper and lower surfaces are
prescribed, however, the corresponding electrostatics equations and their boundary conditions should be
formulated in a different way. This is discussed as follows.

Denoting the prescribed electric potentials on the upper and lower surfaces by ¢ and ¢, respectively,

Ploy =05 @l =0 (22)
and combining the forth equation of Eq. (12), we have

0 = _o¥ ot
w o

With Egs. (11), (14) and (23), the electrostatics equation and its corresponding boundary condition for
piezoelectric shell actuator with the electric voltage acting as the driving signal are obtained as,

elulor—o20)] [ ~08)] anen_,
da Lot h? ’
CRENE /hz)lnl + (D8 = DY /1 )2 . WO — W /1 (24)

m_e9 =9

ol =" (23)

5(/)(0)

Eq. (24) serve as alternative equations to Eq. (20) when the electric boundary conditions are specified by
Eq. (22).
The constitutive relations of the shell can be obtained by integrating the constitutive Eq. (1)

EO©
o1 _[4 B|[eY] [P O R|) (25)
o B D&M 0 R H|| o
DO Pr o™ ¢ K L M](E©
ph Y = |o" RT {8(1)}+ L M N|{EOD (26)
D2 RT HT M N O] |E®

where

T
n (n n) _(n n) _(n n
o = {011>7U§27033)75(23,031);052)}

T
e = { (lr;)a8(2';)78(32)’8(2?’Bg’i)vs@} , n=0,1
T
n _ (n) () y(n)
D(7) _ {Dln 7D2n ,D;l }
T
EO = {EP VBV n=01,2

It should be noted that the shear correction factors should be taken into account (taken to be 5/6 in the
following numerical studies). The elements in the block matrices given in Egs. (25) and (26) are defined by
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{Al”Blj,DU} = / C{/(I,Z,Zz)dz
—h
h
2 3
{PijaQijaRijaHij} :/ eij(LZ,Z )2 )dZ
—h

h
{Kijs Lij, My, Ny, Oy} = /hszi(l»ZvZZ»ZS»Z“)dZ

The above definitions are valid for functionally graded piezoelectric shells. The equations of electrostatics
and the related boundary conditions for the piezoelectric shells are only given when the driving signal is
surface free charge density imposed upon the major surface. When the driving signal is electric voltage, the
corresponding equations can be obtained straightforward.

By Substituting Egs. (25) and (26) into Egs. (18) and (20), the equations of motion and electrostatic in
terms of displacement and electric potential can be written in compact matrix forms as

LU+ Lp+P=L,U

LU+Lyp+0=0 @7)
where
U= {u(lo),uil),u(zo),ugl),ugo),ugl)}T
o ={o, 0", qD<2>}T
p— {P1<0>,P1<1>’P2<0>,P2<1>’P3<0>7P3<1)}
0= {q(o)vq(l)’q(Z)}
PO =ady(T) +T,); PV = didy(WT, —AT,), =123
q" = 4,4, (W% + (=n)"w7), n=0,1,2
Differential matrix operators Ly and L} are given by
2 2 2 ) 0
Ld:Ld1aTC%+LdzaTC%+Ld3m+Ld4aTcl+LdsaTcz+Lds (28)
and
2 2 2
Lz:Lcha%%‘FLcTza%%‘FLcTaﬁ_ 34%‘%2%"‘%2 (29)

Matrices L. and Ly, are obtained simply by replacing matrix Ly in Eq. (28), respectively. The matrices Ly;,
Ly, Ly; and L, are listed in Appendix A. This completes the derivation of the basic governing equations and
the corresponding natural boundary conditions for functionally graded piezoelectric generic shells.

3. Method of solution

The developed high order theory for functionally graded piezoelectric shells is then used to study a
simply supported piezoelectric shallow shell subject to applied sinusoidal loads. It can be easily verified that
the following displacement and electric potential functions satisfy the simply supported edge boundary
conditions,
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{“§0>7 14(1])} = {U(O), U(l)} cos ao; sin ba,
{”50)7 ué”} = {V'9, ¥} sin aa; cos ba (30)

{ug()), ugl)} = {w®, w} sinax, sin ba,

{q)(o)7 oW, (p<2)} = {II’(()), p ‘P(Z)} sin ao; sin bor, (31)

where a = mn/L, b = nn/L,, m and n are integers, L, and L, are the lengths of the shell in the «; and o,
directions, and the unknown coefficients U, g, 7Oy O w0 o0 ¢ are to be determined.
We note in passing that the form of the governing equations depends upon the applied electric boundary
conditions. Consider first that electric loading is imposed through the surface free charge density. When the
following sinusoidal normal traction and surface free charge densities 77 sinao,sinba, and
w* sin ao; sin ba, are applied at the major surfaces, a set of algebraic equations regarding the unknown
coefficients in Egs. (30) and (31) can be obtained by substituting Egs. (30) and (31) into (27), giving

[IM{x} = {F} (32)
where [I'] is a2 9 x 9 symmetric coefficients matrix (see, Appendix B), and {x} and {F} are, respectively, the
unknown displacement and electric potential vector and applied load vector,

x= {U(O), U(l), V(O)7 V(l), W(O), W(l), l{/(o)7 lp(l)7 p2) }T

o . o _ T

F= {0 000 —A Ay (TS +T3) = AiAsh(Th —Ty) — Ay (5 +7) — AL Ash(T° —T5°) — A1 AL (5 +w*)}

(33)
Secondly, consider the electric loading given by the electric potentials acting on the major surfaces. Under
such loading conditions, the piezoelectric element functions as actuator. And sinusoidal loadings are as-

sumed on the major surfaces, i.e., T? sin aao sin ba, and @< sin ao; sin bo,. The corresponding algebraic
equations related to the unknowns in Egs. (30) and (31) now read

[T1{z} = {F} (34)

where

(7} = {UOUO YOy O W(l)g,(m}T
- S . _\AT (35)
{F} = {0 000 —AlAz(T3+ + T3) —AlA2h(T3+ - T3>0}

and [I'] is a 7 x 7 symmetric matrix related to [I'] by

Flj:F1j5 l<67 j<6
Ty =TIy — oo/l

It should be noted that following the above procedure solutions for non-sinusoidal loading can also be
obtained using the Fourier series expansion method.
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4. Numerical results
To validate the developed high order theory, we first apply it to a simply supported homogeneous pi-
ezoelectric shell subjected to sinusoidal mechanical loading on the major surfaces (i.e., the upper and lower
surfaces of the shell). Since exact three-dimensional theory of this problem is available (Chen, 1997), a
comparison between the present theory solution and exact solution is possible. The homogeneous piezo-
electric shell is assumed to be made of PZT-4, with the material constants given (Berlincourt et al., 1964)

C12 = 778, C13 = 743, C33 = 115, C44 =2.56 (1010 Pa) (37)
€11 = 646, € = 5.62 (CV/ITI)

Chy = 13.9,
€33 = 151, €15 = 12.7 ((:/11'12)7

e = —5.2,
where the poling direction is along the radial direction.

By assuming the Lame parameters and curvilinear radii to be 4, = 4, = 1, Ry = Ry, R, = oo where Ry is
the radius of the middle surface of the shell, the developed high order theory can be applied to the circular
cylindrical shell. In numerical simulations, the following geometrical parameters for the shell are used:
Ry=1m, L, =n/3, L, =4 m. Two parameters are introduced to describe the thickness effects, namely
S = Ry/2h, y = z/2h. Unless stated otherwise, S = 5 and 50 are assumed throughout the following calcu-
lations, representing thick and thin shells, respectively. When the homogeneous piezoelectric shell is only

subjected to an electric loading in accordance with ¢ = @ sinaa sin ba, whilst T = 0, variation of the
induced radial displacement (i.e., the transverse displacement) in the radial direction is given in Fig. 2. On
the other hand when a mechanical loading in accordance with 73" = T sinao, sinba, with its electric
boundary conditions being ¢* = 0, distribution of the electric potential in the radial direction is given in
Fig. 3. In Figs. 2 and 3, solid and broken lines denote the present high order theory and exact solutions

(Chen, 1997), respectively. It can be seen from Figs. 2 and 3 that the high order theory successfully captures

the features revealed by the exact solution, that is, the respective linear and parabolic distributions of the

resulting radial displacement and electric potential. Notice that the significant change of the transverse
displacement in the shell thickness direction suggests a non-negligible transverse normal strain, which has

so far been ignored in most published models. For consistent comparison purpose, in Fig. 2,

0.6
A A —&—s=5 o e a [ ]
L] eser0 b S/
044 4 —A—5=50 2 4 gon
Al --0--s=5(chen) .I g ./
| l --O--s=10(chen) | | ) /
02+ A --A--s=50(chen) o @ o | ]
! . o
é l CI) [ ] /D |
_ 0o 4 1 s J g "
i s 4 § d
-0.2 o 41 9’ .l /D/ I/
i s d 4
-0.4 41 QI ol /Ei/ -/
‘A l (; ol [i/ l/
-0.6 T T T T T T T T 1
-0.015 -0.010 -0.005 0.000 0.005 0.010
i

Fig. 2. Radial distribution of the displacement #; for homogeneous piezoelectric shells under the loading ¢+ = 1V, T = 0. Results are
shown for shells of three thickness ratios (S = 5, 10 and 50). Solid and broken lines denote the present high order theory and exact

solutions, respectively.
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0.2 1 A g s
A/ —o—s=10
- 7 —A—5-50
004 no A --m-- s=5(chen)
> g )\ --®-- s=10(chen)
“\ --A-- s=50(chen)
-0.2 a2
0.4 1
-0.6 +——1-+—7—-"—1—"1—"""1"—"""—""1"—""""7"—""7
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2
Fig. 3. Radial distribution of the electric potential @ for homogeneous piezoelectric shells under the loading 73" = 1 Pa, ¢* = 0. Results

are shown for shells of three thickness ratios (S = 5, 10 and 50). Solid and broken lines denote the present hi;gh order theory and exact
solutions, respectively.

El = 631/S2611u1, ’1/73 = 631/S2611u3, a = 1/%(/) are introduced, and u = C11/2hS4u1, Uz = C11/2hS4u3,
@ = e31/2hS*@ are introduced in Fig. 3. They will be used in following figures when the applied loading is
electric potential on the upper and lower surfaces or surface traction, respectively. Now, consider the shell is
made of functionally graded piezoelectric materials, in which only piezoelectric coefficients in Eq. (37) are
varied with respect to z while other material properties are the same across the thickness. Two cases are
numerically investigated: a linear variation (i.e., e;(z) = e;(1 +z/h)) and a parabolic variation (i.e.,
e;j(z) = 3e;(1/2 +z/2h)%) of the piezoelectric coefficients, with z in the range of —4 to 4. Note that the
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Fig. 4. The electric potential @ of graded and homogeneous piezoelectric shells for different thickness under loading (75 =1 Pa,
wt =0).
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particular variations of the piezoelectric coefficient are specified to ensure their averaged values along the
thickness direction are the same as those of the homogeneous piezoelectric shell.

Figs. 4-7 illustrate the variation of the electric potential @, displacements (circumferential component ;
and radial component #;), and the circumferential normal stress o1; induced by the mechanical loading with
73 =1Paand T, = Di = 0, where the electric boundary conditions are adopted to model piezoelectric
sensors. In each figure, responses of the shell made of three constituent materials, i.e., uniformly (abbre-
viated as ‘homo’ in the figures), linearly and parabolically (abbreviated as ‘linear’ and ‘parabolic’) varied
piezoelectric coefficients, are included for the interests of comparison. It is seen from Fig. 4 that under
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—&— parabolic
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S= 50{ --@--linear
—A— parabolic
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Fig. 5. The out of plane displacement #; of graded and homogeneous piezoelectric shells for different thickness under loading (75" =1
Pa, w= = 0).
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Fig. 6. The in-plane displacement %, of graded and homogeneous piezoelectric shells for different thickness under loading (7" = 1 Pa,
wt =0).
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external mechanical loading the induced electric potential for shell with parabolically distributed piezo-
electric coefficients is the biggest in magnitude, followed in sequence by those for shells with linearly and
uniformly distributed piezoelectric coefficients. In other words, the functionally graded piezoelectric ma-
terials are more sensitive to external loading, an important advantage of functionally graded piezoelectric
materials over homogeneous ones when acted as sensors. Moreover, the non-linear distribution of the
electric potential demonstrates again the necessity for including the second order term in Eq. (12). Note
from Fig. 5 that for both thin and thick shells varying the piezoelectric coefficient from uniform to para-
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Fig. 7. The in-plane stress oy of graded and homogeneous piezoelectric shells for different thickness under loading (75 =1 Pa,
wt =0).
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Fig. 8. The electric potential ¢ of graded and homogeneous piezoelectric shells for different thickness under loading (¢ =1V,
TF =0).
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bolic distribution in the thickness direction has noticeable effect on the out of plane displacement ;.
However, the effect is negligible upon the in-plane displacement #; and stress oy, see Figs. 4-7.

Another important usage of piezoelectric materials is that they can be used as actuators in smart
structures. To mimic such situations, the loading with T? =0,¢  =0,and p" = 1 Vis applied to the upper
and lower surfaces of a moderate thick shell with § = 5. The high order theory predicted corresponding
responses for the electric potential, displacements, and stress are plotted in Figs. 8-11. Fig. 8 shows the non-
linear variation of the electric potential across the shell thickness direction. It is clear from Fig. 8 that the
electric potential within functionally graded piezoelectric shells is bigger than that within the homogeneous
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Fig. 9. The out of plane displacement u3 of graded and homogeneous piezoelectric shells for different thickness under loading (¢* =

Vv, TF =0).
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Fig. 10. The in-plane displacement %, of graded and homogeneous piezoelectric shells for different thickness under loading (o™ =1V,

T =0).



X.-H. Wu et al. | International Journal of Solids and Structures 39 (2002) 5325-5344 5339

0.6 4
ome ---0-- homo.

" i\ s=5 --m--linear
04+ F.’. ’\ —&— parabolic
e
P

0.2 4 - 0\
1
I
A
0.0 o .
> \
] Om
.
I
-0-2+ o a &
. \
u] n
\
: \
-0.4 o
N A\
u] n
-06 T T T T T T T T T T T T T T
-100 -80 -60 -40 -20 0 20 40
0-11

Fig. 11. The in-plane stress o;; of graded and homogeneous piezoelectric shells for different thickness under loading (¢p* =1V,
T =0).

one. This also explains why the induced out of plane displacement u3 for graded shells is greater (see, Fig.
9). We can thus conclude that the functionally graded piezoelectric materials are better candidates than
homogeneous piezoelectric materials when used as constituent materials for actuators. Again, Figs. 10 and
11 reveal that varying the piezoelectric properties has negligible effect on the in-plane displacement u; and

stress oqj.

5. Conclusion

A high order theory model on the basic governing equations and the corresponding natural boundary
conditions for functionally graded piezoelectric generic shells has been derived. The formulae given here
can be used to obtain the governing equations for other piezoelectric structures such as beams and plates,
treated as degenerated systems of generic shells. With the developed formulations, the electromechanical
characteristic of a simply supported inhomogeneous and homogeneous shell is studied. The obtained results
agree well with available exact solutions. The assumed transverse normal strain and parabolic variation of
the electric potential in the high order theory are found to be essential for accurate modeling. The sensing
and actuating mechanisms of a functionally graded piezoelectric shell are investigated. The obtained results
show that, in terms of sensing and actuating, the functionally graded piezoelectric materials are superior to

homogeneous piezoelectric materials.
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Appendix A

The matrices appearing in Eq. (28) are expressed as follows:

Matrix Lqg;:
Lai(1,1) =AnAd> /A1, Lai(1,2) =Lai(2,1) = Buds/41,  Lai(2,2) = D142 /A,
La1(3,3) = AesA2/A1,  Lai(3,4) = La1(4,3) = BesA2/A1,  La1(4,4) = Dged2/ 4,
Lgi(5,5) = AssA> /4y, Lai(5,6) = Lgi(6,5) = BssA> /A1, Lai(6,6) = Dssd» /A,

The other components are zero.
Matrix Lgp:

Lop(1,1) = AesA1/Az,  Lar(1,2) = Lap(2,1) = BesA1 /A2,  Laz(2,2) = DA /A2
Lar(3,3) = Andi /Ay, Lax(3,4) = Lax(4,3) = BpAi /4>, Lap(4,4) = DA, /A,
Lgr(5,5) = AsaAi /A2, Lar(5,6) = Lax(6,5) = BasA1/A>, Lgr(6,6) = DyA; /4>

The other components are zero.
Matrix Lgs:

Li3(1,3) =La3(3,1) = Aip + Aes, La3(1,4) = La3(4,1) = B1 + B
L43(2,3) = La3(3,2) = Bio + Bes, La3(2,4) = La3(4,2) = Di» + Des

The other components are zero.

Matrix Lgs:
Las(1,5) = —Laa(5,1) = A>(A11 /Ry + A12/Ry + A4ss5/Ry)
Las(1,6) = —L4a(6,1) = A2(413 + Bii/R1 + B12/R> + Bss/R1)
Las(2,5) = —L4a(5,2) = A2(B11 /Ry + B12 /Ry + Bss /Ry — Ass)
L44(2,6) = —Lga(6,2) = A>(B13 + D11 /R1 + D12/Ry — Bss + Dss /Ry)

The other components are zero.

Matrix Lgs:
Lgs(3,5) = —Las(5,3) = A1 (A12/Ry + A2 /Ry + Ass/R>)
L4s(3,6) = —Lgs(6,3) = A1(Aas + Bia/R1 + B2 /Ry + Bas/R»)
Lgs(4,5) = —Lys(5,4) = A1(B12/Ry + B /Ry + Baa /Ry — Aua)
L4s(4,6) = —Lys5(6,4) = A1(B2s + D12/R1 + D2 /Ry + Das/Rr — Bas)

The other components are zero.
Matrix Lge:
(1,1) = —Ass4142 /R,  Las(1,2) = Lgs(2, 1) = AssA142/R) — BssA1 4,/ R
(2,2) = —2BssA14,/R; — DssA A2/ R} — AssA1 4,
(3,3) = —Aud A2 /R;
Las(3,4) = La(4,3) = A4ad145/Ry — By A2 /R3
(4,4) = 2B4yA142 /Ry — DayA1A2/R5 — Aud1 4,
(5,5) = —A1 A1 A2 /R} — 24124142/ (R\Ry) — And1 42/ RS
(5,6) = —A1 A1 A2 /R — 24124142/ (R\Ry) — AnA1 45/ RS
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The other components are zero.
Matrix Lg;:
Lei(5,1) = Pisdy /A1, Lai (5,2) = La(6,1) = O1542/4,
Lei1(5,3) = Lei(6,2) = RisA2 /A1, Lci (6,3) = His42/ 4,

The other components are zero.
Matrix Lg:

Loo(5,1) = Puudi /A2, L2(5,2) = Lo (6, 1) = Ondi /4,
La(5,3) = Lea(6,2) = Ry /A2, L2 (6,3) = Houd /A,

The other components are zero.
Matrix Le:

Les(1,1) = PisAz /R, Lea(1,2) = (P51 + Ois/R1)A2, Lea(1,3) = (2031 + Ris/R1)A4>
L(2,1) = (=Pis+ Ois/R1)42,Lea(2,2) = (031 — Q15 + Ris/Ri1)4,
Les(2,2) = (2R3 — Ris + His/R1) A4,

The other components are zero.
Matrix Lgs:

Ls(3,1) = Pyd /Ry, Lea(3,2) = (Pyy + On4/Ro)A1, Lea(3,3) = (2035 + Roa/R>)A4,
Lea(4,1) = (—Pos + O24/R2) A1, Lea(4,2) = (032 — O2s + Roa /R4,
Lcs(4,3) = (2R3 — Ry + Hoy /Ry) Ay

The other components are zero.

Matrix Le:

Le6(5,2) = —(Ps1 /Ry + P2 /Ry)A1 A2, Le6(5,3) = —2(031/R1 + O /R2)A14>

Les(6,2) = —(Qs1/Ri + O3 /Ry + P33)A142, L6 (6,3) = —2(R31 /Ry + R /Ry + O33)414,

The other components are zero.
Matrix L,,;:

[ —K142/A1  —LydaJA4;  —MAx/A4,
Ly = | —Lndy/41 —MnAy/4y —Nnds/4,
| —M1A4,/4,  —NnAx/A1  —0pds /A, |

Matrix L,,:
[ —K»ndi/4y  —Lndi/4y —Mxnd/A4; ]

Ly = | —Lpdi/4s —M»Ai/45 —Nxndi/4,
| —MxnAi/4s  —NpAi[/4;, —0nd/A,; |

Matrix L,3 = Ly = L5 =
Matrix L,:

0 0 0
Ly= |0 KudiAy 2L33A414,

5341
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Matrix L,:
p(0> p(l) 0 0 0 0
p p@ 0 0 0 0
0 0 p(0> p<l) 0 0
L, = 0 0 p» p® o0 0
0 0 0 0 p(O) p<1)
0 0 0 0 p(l) p<2)
Appendix B
Fll = —(azAz/AlAll + bzAl/A2A66 +A1A2A55/R%)

I'yy = A1 AxAss/Ry — a*A>/A\ By — b*A, /A>Bes — A1A2Bss /Ry
I'; = —ab(A412 + Aes)

'y = —ab (B> + Bgs)

I'is =aA(An /R + A2 /Ry + Ass/Ry)

I'g = ads(A13 + By1 /Ry + Bia/Ry + Bss/Ry)

'y = ad>Pis /Ry

I'is = ad,(Ps1 + O1s/Ry)

I'g = ad>(Ris/Ry +20531)

Iy = —(a*4>/A\Dyy + b*A, /A2Des + A14>Dss R} + A1 ArAss — 2BssA 14> /RY)
I'y; = —ab (B2 + Bes)

Iy = —ab(Dyy + Des)

Iys = ady( — Ass + Bu/Ri + Bia/Ry + Bss /Ry)

I'ys = ad>(Dy /Ry + D12 /R> + Dss /Ry + B3 — Bss)

I'y; = ad>(— Pis+ Oi1s/R))

Iy = —ad>(Ris/Ri + O3 — Ois)

Iy = aA> (2R3 — Ris + Hys/R,)

I'; = _(azAZ/AlA% + b4 /424 +A1A2A44/R§)

I'yy = A1A2Ag /Ry — a®Ay/ A\ Bgs — b*A1 /2By, — A1 ABu /R,
I'ss = b4, (A12/Ry + An /Ry + Ass/R>)

I'sg = b4, (A + Bia/Ri + By /Ry + Bus/Ry)

I's7 = bA, Py /R,

Iy = bA (P32 + Ou/Ry)

I's9 = bA1(Roa /R +203)

Ty = —azAz/AlDéé — b2A1/A2D22 — AaA1A4r + 2Basd 142 /Ry —A1A2D44/R§
Tys = bAi( — Aas + Bio/Ry + Bn/Ry + By /R)

Iy = bA1(D12/Ri + D /Ry + Daa/Ro + Baz — Bas)

Ty = bA1(— Py + Q0x/Ry)

w2
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Iyg = bA1 (03 — O + R /Ry)
T's9 = bA; (2R3 — Ry + Hra/R>)
I'ss = *(azAz/AlAss + b4 [ ArAss + A1 A2 /RIA L + 24,142/ (R1R2) A1 +A1A2/R§A22)
Iss = —(a*A2/A41Bss + b A1 /AyBas + A1A2 R\ A1 + A142/RaAss + 414> /R By
+ 24145/ (RiR2)B1s + 4142/ R3B)
I's; = —(a’A2/A\Pis + b*41 /A>Ps)
I'ss = —(a*4>/ 4,015 + b4, /42054 + 414>/ R\ Py + A14>/R2Py,)
I'sy = —(a®A2/A\Ris + b*A1 [ ArRys + 24142/ R\ 031 + 24145/ R, 03,)
Tes = (a*A2/A\Dss + b*A, /A3D4y + A1 A2 /R2Dyy + 24,45/ (R\Ry) D1y + A1 43/ R3Dyy
+ 24145 /R B3 + 24142/ RyB; + 414:Cs3
I = —(a°4>/41015 + b*4, /4:054)
Ies = —(a’A2/A1R1s + b°A1 /AsRos + A142 /R 031 + A142 /Ry O3 + A1A2Ps3)
Iey = —(a’Az/A1Hs + b°A1 [ AsHay + 24143 /R Ry + 24143/ RoRy: + 2414, 053)
I'yy = A/ 4Ky + b* A4, /4K
I = a Ay /A Lyy + b*A, Ay L
Iy9 = a’Ay/ A\ My, + b* A /A2 M)y
I'sg = a’Az /A My, + B4 [ Ao Moy + K33414,
T'sg = a* A3 /A1Nyy + b*A1 [ AoNyy + 2Lz A1 4y
Tog = a’A> /41011 + b4 /40 + 4M334, 4.
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